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AR8TRACT 

The set of N equations, 

Qt, = AX@), -w) = &I , 

where X(t) is an N-vector and A is a constant N x N matrix, may be solved by a recursive 
method, 

X(t + T) = exp(AT)X(t). 

We discuss rational function approximations for the matrix exponential, exp(A7’). 
Calahan has suggested using the Pade (N, N) approximant, but when the eigenvalues 
of A are widely spaced in magnitude, the Pad6 (N, N) approximant is inaccurate unless 
T is very small. 

A new family of rational approximations to the matrix exponential is presented; 
the best member of the family to use depends upon the distribution of eigenvalues of A. 
Contour plots of the absolute square error and of the phase error are given for several 
approximations. 

A numerical solution of the heat equation, discretized in space, is given as a numerical 
example. 

We propose to solve the set of equations 

X(t) = AX(t), m9 = XII , (1) 

where X(t) is an N-vector and A is a constant N x N matrix, using the recursive 
method 

X(t + T) = exp(AT) X(t), (2) 

with a “rational fraction” approximation for the matrix exponential exp(A7’). 
Although we consider only the linear, time-independent homogeneous case, (l), 
our results are immediately applicable to the general linear case, 

X(t) = A(t) X(t) + B(t). (3) 
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Generalization to 
X(r) = F[X(r), t] (4) 

can be made by the methods described by Sandberg and Shichman [l] and by 
Liniger and Willoughby [2]. 

Systems of equations such as (1) arise frequently in two areas: in the solution 
of state-equations in circuit analysis [3] and in the solution of parabolic partial 
differential equations discretized in the space variable [4]. 

We restrict our consideration to systems for which all eigenvalues of A have 
nonpositive real parts; this includes, but is not limited to, all passive systems. 
Rational fraction approximations to exp(AT) can be numerically stable for 
arbitrarily large step sizes T, as shown by Calahan [3] and Varga [4, 51. 

For purposes of discussion, suppose that A has been diagonalized by a similarity 
transformation; then the rational approximation to exp(AT) is also diagonal, 

-GO + T) : ew@,T) &W, (5) 

where A, is the n-th eigenvalue of A. Thus the same functional form which is to 
approximate exp(AT) must approximate well each of the exp(h,T) for the form to 
be useful. The distribution of the A, in the complex plane is of primary importance 
in choosing the approximation to be used, especially if large step size T is desired. 

The general rational function of type (p, q) is 

RPJ( Y) = i bnyn/i a, yn. 

There are (p + q + 1) independent parameters, since a common factor may be 
divided out of the a’s and b’s. To avoid a pole in RW( y) at y = 0, a, must be 
nonzero; we shall set a0 = 1. The remaining ( p + q + 1) coefficients must be 
chosen to give an accurate, stable approximation to exp( y). If they are chosen 
so that the Maclaurin expansion of R,(y) agrees with the Maclaurin expansion 
of exp( y) to as many terms as possible (p + q + 1 terms), the result is the Pad6 
(p, q) approximant to exp( y), P,(y). The matrix analog of P,(y), used to 
approximate exp(AT) in Eq. (2), results in a numerically stable integration method 
if p 6 q and the eigenvalues of A have nonpositive real parts [3,5]. For a given 
maximum power N of y in the rational function, the Pad6 (N, N) approximant, 
PNN( y), agrees with the Maclaurin expansion of exp( y) to the largest possible 
number of terms, and so has been recommended by Calahan 131. [We consider 
rational function approximations with given IV, since these all require about the 
same amount of computation to evaluate exp(AT).] 

However, P&y) approaches (- l)N for large 1 y 1, instead of the true value of 
zero for any y with negative real part. 
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We consider as an example PZz( y), 

Pm(Y) = 
1 + gy + AT” 
1 - Sr + &r” ’ (7) 

whose Maclaurin expansion agrees with that of eY to five terms. Figure 1 is a 
contour plot of the squared error, 

I ew - LW12, (8) 

for - 10 < Real(y) < 0 and 0 < Imag( y) < 4.5. The plot is symmetric about 
the Real(u) axis. (Note the change in the horizontal scale at -5.) For small 

Real (y) 

FIG. 1. Contour plot of / e” - Pep(y)/*. Note change in horizontal scale at Real(y) = -5. 

1 y (, PZa( JJ) is an excellent approximation to e Y, but the approximation is much 
poorer for large I y I. The use of 

[Z - BW) + MAT)21-1[z + 3W) + iwwl (9 

in place of exp(AT) in (2) results in a stable numerical integration method for any 
T > 0, but for accuracy T must be chosen so the y, = A,T lie in the region of the 
complex y plane where PeZ( y) is a good approximation to eg, i.e., small I y I. 
Since stiff differential equations are characterized by widely-varying h’s, and T 
must be chosen so that I Am= T 1 is small, use of the Pad6 (2,2) approximant 
necessitates the use of a small step size T. 
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For a rational function Rpp( y) to go to zero for large y, it is necessary thatp < q. 
This suggests the use, for a given maximum power N of y, of the PadC approximant 
PN-& y) to e’. As an example, we consider PrZ( y), 

Pl2bJ) = 1+ 4Y 
1 - gy+ Qy”’ 

whose Maclaurin expansion agrees with that of I? to four terms. Figure 2 is a 
contour plot of the squared error, I e Y - PJ y)12, similar to Fig. 1. P12( y) is an 

-r 

k 

Real (y) 

FIG. 2. Contour plot of 1 ey - P&)la. Note change in horizontal scale at Real(y) = -5. 

excellent approximation to eY for small 1 y I. For large negative Real(y), the error 
is again small, although the relative error is large. If the matrix analog of P12( y) is 
used to approximate exp(AT), modes with large negative eigenvalues will die out, 
but not as rapidly as does the correct solution. For Real(y) less than about -60, 
the squared error is again less than 10-3, but between -60 and about -2.3 the 
error is larger. This indicates that P12( y) would be useful for stiff differential 
equations, (l), such that some eigenvalues are small in absolute value, and that the 
remaining eigenvalues have large negative real parts. Then the step size T may be 
chosen so that both the large and small eigenvalues have y = XT in the region 
where the error in PX2( y) is less than the desired amount. For squared errors of 
10-2 (or larger), the eigenvalues need not be widely separated, since the area 
in the y plane where the squared error is less than 1O-2 is one contiguous region, 
rather than two widely-separated regions. Having one contiguous region of 
satisfactory error is superior to having two separated regions because less need 
be known about the eigenvalues of A in order to choose T properly. 
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However, PIZ( y) has one contiguous region of satisfactory error only for squared 
error greater than 9.6 x 10-3, the maximum squared error along the negative real 
y axis. Other rational approximations of type (1, 2) to e” exist which have less 
accuracy near the origin, but improved accuracy farther from the origin. We 
consider a rational approximation of type (1, 2) and match the first three terms 
of the Maclaurin expansion of e”. This results in a rational approximation with 
one undetermined coefficient. We let a2 = /3 and express the result as 

1 + (!i - fQ>r 
R12(JJ; 8) = 1 - (it + fJr + fly2 * 

The roots of the denominator are in the right hand half of the y-plane for /3 3 0; 
in addition, I&,( y; /I) is less than or equal to 1 in absolute value for purely 
imaginary y if /3 3 0. Using Calahan’s [3] criteria, we see that the use of R,,( y; /?) 
for /3 > 0 results in a stable method for any step size T, if the eigenvalues of A 
all have nonpositive real parts. Three of the PadC approximants are special cases 
of R,,( y; /3): the “degenerate” case, pll( Y> = R12( Y; 0); p12( Y) = R12( Y; i); 
and po2( v) = R12( Y; 6). 

For many physical applications giving rise to systems of stiff differential 
equations, the large-magnitude eigenvalues lie near the negative real axis. For this 
type of system, we may choose fl so that the error in R12( y; fl) is small for negative 
real y. The /3 for which the maximum error along the negative real y axis is least 
is p = 0.306; Fig. 3 is a contour plot of the squared error of R,,( y; 0.306). The 
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FIG. 3. Contour plot of 1 ew - R&J; 0.306)1*. Note change in horizontal scale at 
Real(y) = -5. PI*(y) is more accurate than &(y; 0.306) to the right of the dashed line starting 
near Real(y) = -2. 
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error is higher than that in P1& v) to the right of the dashed line, and less to the 
left. For squared errors larger than 5.9 x 10-4, &( y; 0.306) has one contiguous 
region of satisfactory error. This value is the smallest possible for R,,( y; p), 
with any choice of 8. Note that, for Imag( y) < 0.45 Real(y), the squared error 
is less than 1O-J for any y in the left half-plane; for Imag( y) < 0.75, the squared 
error is also less than 10-3. [A mode with Real(A) = 0 is purely oscillatory; then 
Imag( y) = Imag(h7’) = 0.75 corresponds to taking time steps of approximately 
.75/2rr m l/8 of a period.] 

Figures 4-6 are contour plots of the phase error [the phase of exp( v) is Imag( r)], 

Imd Y) - Ph=VL( ~11 (12) 

for the three rational fractions considered, for 

-5 < Real(y) < 0 and 0 < Imag(y) < 4.5. 

Since the phase error can be no larger than 7r, and no less than - rr, each plot has 
a “branch cut.” These branch cuts start at the zeros of the numerator. The Pad6 
(2,2) approximation has two branch cuts, starting at y = -3 f i d/5; the Pad6 
(1,2) branch cut runs from y = -3 along the real axis to -co; and the 
&%( y; 0.306) branch cut runs from y = - 5.16 along the real axis to - 00. 

Thus for large negative Real( y), P,, and R,,( y; /3) have large phase errors, but 
small magnitude errors. The time evolution of rapidly-decaying components of 
X(t) will not be calculated exactly, but these components wiZZ decay. 

Real (y) 

FIG. 4. Contour plot of phase error, Imag(y) - Phase[P&)]. 
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FIG. 5. Contour plot of phase error, Imag(y) - Phase[P,,(y)]. 
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FIG. 6. Contour plot of phase error, Imag(y) - Phase[R,,(y; 0.306)1. 
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The same techniques may of course be used to construct higher-order approxi- 
mations. For example, &( y; r) may be obtained by a method similar to that 
used to obtain R,,( y; j?): 

R23W Y) = 
1 + (B - 6yj.Y + (iC-22y)Y2 

1 - (4 + WY + (9~ + 4y)y2 - v3 - 

Rs3( y; y) results in a stable numerical integration method for any step size T if 
y 2 0. Special cases are 

P22b9 = R23(% Oh p23(Y) = R23(% &d; and p13W = &3(x 2~). 

For R23( y; 0.0939), the maximum squared error along the negative real y axis 
is smaller than that for any other y; this squared error is 9.79 x 10-5. Figure 7 
is a contour plot of the squared error, and Fig. 8 the phase error, of R,,( y; 0.0939). 

In order to illustrate the properties of these matrix exponential approximations, 
we consider solving the normalized heat equation, 

wx, t) a2u(x, t) O<x<l -=- 
at ax2 ’ O<t (14) 

with boundary conditions ~(0, t) = ~(1, t) = 0, and initial conditions U(X, 0) = 
(sin TX)*. We discretize the space variable, dividing (0, 1) into M equal intervals 

Red (y) 

FIG. 7. Contour plot of 1 ey - R&y; 0.0939)/*. Note change in horizontal scale at 
Real(y) = -5. 
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Real (y) 

FIG. 8. Contour plot of phase error, Lmag(y) - Pha.se[R,,(y; 0.0939)]. 

Ax = l/M, and let U,,(f) = u(ndx, t). We use the three-point central-difference 
approximation for the second derivative, 

Then, since U,,(f) = U&) = 0, (13) is of the form (1) with N = A4 - 1. The 
matrix A is tridiagonal, with diagonal elements -2/(~lx)~ and sub- and super- 
diagonal elements I/(~x)~. Similar problems have been considered by Varga [4], 
by Makinson [6], and by Cody, Meinardus, and Varga [8]. 

Since A is symmetric, it has only real eigenvalues. The lower magnitude eigen- 
values of A approximate the lower magnitude eigenvalues of the continuous 
problem, -n2a2, n = 0, 1, 2, *a* . With A4 = 20, the 19 eigenvalues of A range 
from about -10 to -1600. The eigenfunctions of the continuous problem are 
sin(n?rx), n = 0, 1, 2, *** ; the initial condition was chosen to include some of the 
more rapidly-decaying eigenfunctions. Makinson considers this problem with 
u(x, 0) = sin(rx), which is approximately equal to the eigenfunction of the 
lowest-magnitude eigenvalue. Since the higher eigenfunctions are missing from 
the solution, this initial condition does not adequately test the method. 

For A4 = 20, the discretixed problem was solved for 0 < t < 0.5, using time 
steps of 0.025, 0.05, and 0.1, using several different rational fraction approxi- 
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mations to exp(AT). These included the Pade (2,2); the PadC (1,2); R12(-; 0.306); 
and the Pad& (1, l), 

When PJ.) is applied to the heat equation, the resulting method is known as 
the Crank-Nicholson method [7]. In addition, Makinson’s formula with N = 2 
was tested, 

ey N 1 - w5r - f(l + z/w - 
[l - HI + w9rl” * (17) 

Since, in 0 < x < 1, 

(sin rx)2 = 5. I sin 7Tx sin 37rx sin 57rx 
-- - rrt 3 1.3.5 3.5.7 -***’ I (18) 

the true solution to the continuous problem (13) is 

u(x, t) = $ f sin(2k + 1) 3rx 
k4 (2k - 1)(2k + 1)(2k +T e-(sk+l)*Zt* 

For testing the rational function approximations, it is appropriate to compare 
the approximate solutions to the true solution of the discretized problem. This 
was computed using numerically-calculated values for the eigenvalues and eigen- 
vectors. 

TABLE I 

Numerical and Analytic Solutions &(O.l), T = 0.1 

Numerical Solutions Analytic Solution 

nAx PII p2* PIP &4x .306) Makinson Discrete Continuous 

.05 .12106 JO833 

.lO .2aMo XI4488 

.15 24540 .09573 
20 .26359 s5153 
.25 .26256 .206oo 
30 24965 .25490 
.35 23163 .29536 
A0 .21427 .32548 
.45 20198 34401 
so .19757 .35026 

.05811 

.11210 

.15968 

.19978 

.23225 

.25743 

.27597 

.28857 
29586 

.05354 .09618 .04958 .04948 

.10506 .16547 .09794 .09774 

.15308 .21205 .14389 .14360 

.19651 .24027 .18631 .I8593 

.23452 .25455 .22414 .22369 

.26645 .25918 .25646 .25594 

.29180 .25811 28246 .28189 

.31018 .25471 .30151 .30089 

.32132 .25158 .31313 .31249 

.32506 .25035 .317&I .31639 
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Solutions obtained from (2) using the various rational fraction approximations 
to exp(AT) were compared with the analytic solution of the discretized problem. 
Table I contains some sample results for U,(O.l), obtained by one time step of 
size T = 0.1. It is clear that PI1 , Ps2 , and Makinson’s method, (16), are less 
accurate than PI2 and R,,(*; 0.306) for this particular problem. 

Although PII and Pzz result in numerical methods which are stable for any step 
size T, the solutions obtained with large step sizes may be unusable. It is evident 
from Table I that T = 0.1 is too large a step for PII ; after another time step of 
T = 0.1, the solution is negative at several points. 

Figure 9 shows Un(O.l) for the data shown in Table I; u(x, 0) is also shown. 
The points at ndx are connected with a smooth line for clarity. Only the region 
0 < x < .5 is shown, since u is symmetric about x = 5 The true solution to the 

LO- 

.9 - 

.e - 

.7 - 
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= 
J .5- 

=r 

.4 - 

.3 - 

.2 - 

.I - 

(INITIAL VALUE) 

STEP SIZE 0.1 

(2,2) 

izo6 
(I,21 

FIG. 9. Initial value of u(X, r). Solutions U-(.1) obtained after one time step T = 0.1. Points 
at n Ax arc comwzcted with a smooth curve. Disc: true solution to discretized problem. (2,2): 
Pad& (2,2) approximant. (1,2): Pad6 (1,2) approximant. fl = 0.306 : R&y; 0.306). 
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.006 

STEP SIZE.0.I 

-m6L - 
FIG. 10. Solutions U,,(O.S) obtained after five time steps T = 0.1. Points at n Ax 

with a smooth line. Curve labelling as in Fig. 9. 
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r’ 

g .02 - 11,2) 

.Ol - p=.306 

0 _I .2 .3 .4 .5 
t 

FIG. 11. Absolute value of maximum error in U,,(t) for three approximate solutions. Time 
step T = 0.1. Curve labelling as in Fig. 9. 
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discretized problem and the solutions using Pzz , Plz , and R1,(*; 0.306) are shown. 
Note that in one time step these methods successfully change the solution by a 
large amount. R&o; 0.306) has the smallest maximum error. 

Figure 10 shows the corresponding curves at t = 0.5, after five time steps 
T = 0.1; now PI2 is best and it is evident that P,, has not produced a usable 
solution. The reason that PI1 is now better than R,,(*; 0.306) is that, at t = .5, 
the solution is dominated by the eigenfunction (approximately equal to sin ZX) 
with the smallest magnitude eigenvalue (approximately equal to -G). For this 
eigenfunction, XT is approximately -1; from Fig. 3 it may be seen that PI% 
propagates this eigenfunction more accurately than does Z&(0; 0.306). The next 
higher eigenvalue is approximately -97r2, so XT is approximately -9; R,,(.; 0.306) 
propagates all but the lowest eigenfunction more accurately than does PI2 . After 
the higher eigenfunctions in the approximate solutions have died out, the solution 
produced by PI2 is superior. 

In Fig. 11 is plotted max, ( Un(t) - u,usC(n dx, t)l for t = 0.1, 0.2, 0.3, 0.4, 0.5, 
where &tiBC is the true solution to the discretized problem, for three rational 
approximations to exp(AT). A time step T = 0.1 was used. For clarity, the points 
are shown connected. After two time steps, PI2 is better than R,,(*; 0.306). 

Figure 12 is similar to Fig. 11, except that the time step is T = 0.025. After 
four time steps Pz2 is better than R,,(*; 0.306); after twelve time steps, P2* is better 
than PI2 . 

.Ol - 
. 

STEP SIZE 
0.025 

.ooa - 

FIG. 12. Absolute value of maximum error in U”(r) for three approximate solutions. Time 
step T = 0.025. Curve labelling as in Fig. 9. After t = 0.225, curves are blown up by 100. Error 
at t = 0.5 for R&y; 0.306) is 0.0012. 
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In the sample problem, after a few time steps PI2 was more accurate than 
R,,(-; 0.306). In a linear, but nonhomogeneous problem, this would not necessarily 
be so, since the nonhomogeneous term would in general introduce new components 
of the higher eigenfunctions into the solution. Similar considerations apply to 
nonlinear problems. 

We have discussed the use of rational function approximations to the exponential 
of a matrix, and have presented two useful families of approximations. For many 
stiff differential equations arising from physical problems, I’&(*; 0.306) or 
R,,(.; 0.0939) should be useful. The numerical example of the solution of the heat 
equation illustrates the feasibility of a large step size T with the methods discussed 
in this paper. 
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